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SUMMARY

1. Although commonly used by those tasked with lake management, the statistical approach of data

averaging (DA) followed by ordinary least-squares regression (OLSR) to generate nutrient limitation

models is outdated and may impede the understanding and successful management of lake eutrophi-

cation.

2. Using a 21-year data set from Lake Champlain as a case study, the traditional DA-OLSR-coupled

approach was re-evaluated and improved to quantify the cause–effect relationships between chloro-

phyll (Chl) and total nitrogen (TN) or total phosphorus (TP).

3. We confirmed that the commonly used DA-OLSR approach results in misleading cause–effect

nutrient limitation inferences by illustrating how the process of DA reduces the range of data distri-

bution considered and masks meaningful temporal variation observed within a given period.

4. Our model comparisons demonstrate that using quantile regression (QR) to fit the upper boundary

of the response distribution (99th quantile model) is more robust than the OLSR analysis for generat-

ing eutrophication models and developing nutrient management targets, as this method reduces the

effects of unmeasured factors that plague the OLSR-derived model. Because our approach is statisti-

cally in line with the ecological ‘law of the minimum’, it is particularly powerful for inferring

resource limitation with broad potential utility to the ecological research community.

5. By integrating percentile selection (PS) with QR-derived model output, we developed a

PS-QR-coupled approach to quantify the relative importance of TN and TP reductions in a eutrophic

system. Utilising this approach, we determined that the reduction in TP to meet a specific Chl target

should be the first priority to mitigate eutrophication in Lake Champlain. The structure of this statis-

tically robust and straightforward approach for developing nutrient reduction targets can be easily

adopted as an individual lake-specific tool for the research and management of other lakes and reser-

voirs with similar water quality data sets.

6. Moreover, the PS-QR-coupled approach developed here is also of theoretical importance to under-

standing and modelling the interacting effects of multiple limiting factors on ecological processes

(e.g. eutrophication) with broad application to aquatic research.
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Introduction

Cultural eutrophication leads to the decline of water qual-

ity and degradation of aquatic ecosystems and is a serious

environmental problem in many parts of the world

(Smith, Joye & Howarth, 2006). Common symptoms of

eutrophic lakes include high turbidity caused by massive

algae growth and fish kills caused by severe hypoxia

(Schindler, 2006). Harmful algal blooms (HAB) in

eutrophic lakes have emerged as an important threat to
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ecosystem services and human health by fouling drinking

water as well as impeding recreational angling, boating

and swimming activities (Dodds et al., 2009). Multiple

stressors, particularly anthropogenic nutrient loading,

contribute to eutrophication, but the relative importance

of, and interplay between, various drivers varies among

ecosystems (Paerl & Scott, 2010). Variability in the mecha-

nism of eutrophication across diverse lake ecosystems has

led to uncertainty in nutrient reduction strategies, and

societal struggles with HAB mitigation persist (Smith &

Schindler, 2009). For example, management decisions

related to eutrophication have commonly been made

from a regulatory guidance perspective (e.g. nutrient cri-

teria development; U.S. EPA, 2000) and models generated

from multiple-lake data sets (e.g. a chlorophyll-nutrient

model; Phillips et al., 2008), neither of which is necessarily

appropriate for individual, lake-specific eutrophication

management (Mooij et al., 2010; Huo et al., 2013). There-

fore, eutrophication management efforts should be direc-

ted towards ecosystem-specific strategies when the

available data provide sufficient power to develop and

validate individual lake-eutrophication models.

While the reduction in anthropogenic nutrient inputs

has been widely recognised as the primary tool for miti-

gating eutrophication, an important debate in policy for-

ums concerns the optimal design of nitrogen and

phosphorus reductions (Conley et al., 2009a; Schelske,

2009). Due to the high cost of controlling nitrogen inputs

and the potential for nitrogen fixation by some cyano-

bacteria, heavy emphasis has been placed on decreasing

phosphorus inputs to restore eutrophic ecosystems (Con-

ley et al., 2009b; Schindler & Hecky, 2009). However,

dual nutrient reduction strategies for lake management

have also been advocated because phosphorus-only

reduction strategies may be insufficient to control eutro-

phication, and increased nitrogen inputs could exacer-

bate eutrophication problems (Bryhn & H�akanson, 2009;

Jacoby & Frazer, 2009). In fact, neither phosphorus-only

reduction nor dual nutrient reduction may be univer-

sally effective, and it is important to determine which of

these strategies is useful in the context of a specific lake.

Prior to this policy forum, the U.S. EPA (2000) proposed

two percentile-based options to help develop regional

nutrient reduction targets. The 75th percentile option

defines reference conditions based on data from lakes

with most ‘natural’ condition, whereas the 25th percen-

tile option defines reference targets based on sampling

all lakes within the region, including those with consid-

erably less than ‘natural’ condition (U.S. EPA, 2000).

However, the selection of these two percentile-based

options is, to some extent, qualitative because determin-

ing lake condition as ‘natural and minimally impacted’

is unavoidably subjective (U.S. EPA, 2000) and because

the degree of impact in ‘unnatural’ lakes may vary

widely. With the growth of lake long-term monitoring

data, there is a golden opportunity to quantify nutrient

reduction targets by integrating the percentile selections

with ecologically relevant lake-specific nutrient models.

The application of empirical eutrophication models

relating chlorophyll (Chl) to total nitrogen (TN) or total

phosphorus (TP) has been a common approach for deter-

mining nutrient limitation and developing strategies to

control anthropogenic eutrophication since the 1960s (e.g.

Sakamoto, 1966; Dillon & Rigler, 1974; Stauffer, 1991).

However, several methodological issues associated with

these common models contribute to bias and uncertainty

in the inference of nutrient limitation and the determina-

tion of nutrient targets. We will demonstrate that these

can be avoided easily with the adaptation of recent

advances in statistical limnology. While Chl-nutrient mod-

elling derived from multi-lake data sets is necessary and

practical when water quality data from individual lakes

are not available (e.g. Malve & Qian, 2006; Higgins et al.,

2011; Cha, Stow & Bernhardt, 2013), the potential for inac-

curate predictions using multiple-lake regression models

on individual lakes has been recognised since at least the

1980s (Smith & Shapiro, 1981). Furthermore, the prolifera-

tion of large monitoring data sets in the past three to four

decades makes it possible in many cases to develop a lake-

specific approach for model development (Cardoso et al.,

2007). In addition, averaging individual observations

spatially (within a lake or sub-basin) or temporally (across

seasons or monitoring years) is commonly applied in the

generation of eutrophication models (e.g. Phillips et al.,

2008; Wagner et al., 2011); although the negative effects of

data aggregation on the predictive ability were docu-

mented in the 1990s (Jones, Knowlton & Kaiser, 1998) and

the mathematical issue of data averaging (DA) in the log

transformation was addressed in the 2000s (Stow, Reck-

how & Qian, 2006). Furthermore, ordinary least-squares

regression (OLSR) remains a common statistical method

for producing eutrophication models (e.g. H�akanson et al.,

2005; Huszar et al., 2006; Wang et al., 2014), despite wide

acknowledgement of the fundamental conflict between

the underlying statistical assumptions and the ecological

concept of limiting factors in limnology (Kaiser, Speckman

& Jones, 1994). Given these methodological problems, an

important next step for modellers and management

communities is to jointly recognise the need to advance

statistical modelling of lake-specific eutrophication.

Quantile regression (QR), originally derived from

econometric science (Koenker & Bassett Jr, 1978), was
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introduced in statistical ecology (Cade, Terrell & Schroe-

der, 1999) as an alternative to OLSR to quantify better

cause–effect relationships between ecological variables

across the range of the response variable distribution. In

contrast to the OLSR-derived model, which fails to fit a

predictive relationship between the response variable

and the measured factor given the inclusion of other

unmeasured effects, a QR-derived 99th quantile model,

which enables best fit of the upper boundary of the

response variable distribution, provides a more robust

prediction of the response maxima at a given value of

the measured variable by controlling for the potential

effects of other unmeasured factors (Cade & Noon, 2003).

Fundamentally, using the 99th quantile model to fit the

upper boundary follows the law of the minimum in ecol-

ogy, which states that ecological processes are controlled

by the scarcest resource, not the total amount of

resources available (Cade et al., 1999; Cade & Guo, 2000).

Quantile regression has recently been expanded into

many ecological applications (e.g. Sterck et al., 2014;

Wagner, Harmon & Seehausen, 2014), but has not yet

been widely adopted by statistical limnologists or water

quality managers (Abell et al., 2012; Carvalho et al.,

2013), despite the noted theoretical shortcomings of the

OLSR-derived eutrophication models (Kaiser et al., 1994).

Using long-term monitoring data from Lake Champ-

lain (1992–2012), this study shows the ecological and

practical advantages of adopting the QR analysis to sys-

tematically model lake-specific eutrophication. The fol-

lowing steps were taken. First, eutrophication models

were developed using the DA-OLSR modelling

approach to infer nutrient limitation and develop man-

agement targets for Lake Champlain. Next, the advanta-

ges of the QR analysis, relative to OSLR for modelling

nutrient limitation and developing management targets,

are highlighted using all Lake Champlain individual

observations. Lastly, we coupled the percentile selection

(PS) with the QR analysis to develop a robust approach

that quantifies the relative importance of nitrogen and

phosphorus reductions. The structure of the PS-QR-cou-

pled approach and associated nutrient criteria develop-

ment (Fig. 1a–d) is broadly applicable to other systems

where similar water quality data sets exist.

Methods

Data set source

Lake Champlain is a large lake located in north-eastern

America in the continental rift valley between the Green

(Vermont) and Adirondack (New York) mountains

(O’Donnell et al., 2013). The lake is 122 m deep, 19 km

in width at its maximum and 194 km in length, with a

volume of 26 km3 and an area of 1127 km2 (Smeltzer,

Shambaugh & Stangel, 2012). The spatially diverse habi-

tat is characterised by complex bathymetry with over 70

islands, a shoreline of over 800 km and many semi-iso-

lated bays (Chen et al., 2012). The drainage basin has

mean annual rainfall and snowfall of 84.5 and 155 cm,

and average annual minimum and maximum tempera-

tures of �13.9 and 26.0 °C in January and July, respec-

tively (Levine et al., 2012). Compared to the lake surface,

the catchment is large (a 19 : 1 ratio) and includes 11

major rivers and many smaller tributaries (Marsden &

Langdon, 2012).

The data for this case study were collected under the

Long-Term Water Quality and Biological Monitoring

Program on Lake Champlain (LTMP) by the Vermont

Department of Environmental Conservation and the

New York Department of Environmental Conservation

since 1992 (Vermont DEC & York DEC, 2013). Each year,

15 sampling locations spanning the lake were monitored

approximately fortnightly from May to early November.

Details of sampling methods and quality controls are

documented in the Quality Assurance Project Plan

(VTDEC (Vermont Department of Environmental Con-

servation) & NYDEC (New York State Department of

Environmental Conservation), 2013), and water quality

monitoring data are freely available for scientific research

at the web site: http://www.vtwaterquality.org/lakes/

htm/lp_longterm.htm. For this study, we downloaded

3545 paired chlorophyll (Chl, mg m�3), total nitrogen

(TN, mg m�3) and total phosphorus (TP, mg m�3) obser-

vations for each of the 15 stations from 1992 to 2012.

Model procedures

Following the conventional DA-OLSR-coupled approach

for nutrient limitation modelling, the 21-year Chl and

nutrient values from the entire data set (n = 3545) were

first averaged annually for each of the 15 sampling sta-

tions, log10-transformed and analysed using OLSR to gen-

erate the DA-OLSR models of annual means. The subset

of 2130 observations that make up our ‘summer’ data set

use the definition of a summer season in the Lake Champ-

lain region as the period from June to August in regional

climate studies (Guilbert et al., 2014). Similar to the analy-

sis of the entire data set, the summer observations were

also analysed using the DA-OLSR-coupled approach to

produce the DA-OLSR summer mean models.

Alternatively, all 3545 individual Chl and nutrient

observations were log10-transformed and analysed using
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OLSR and QR to generate the OLSR models and the quan-

tile models. Following the QR methodology of Koenker &

Machado (1999), coefficients of determination (R1) were

computed as follows: R1 = 1 – (SUM(F):SUM(R)), where

SUM(F) is the sum of the weighted absolute deviations

minimised in estimating each of the full parameter models

(i.e. logChl = b0 + b1logTN + Ɛ and logChl = b0 + b1log-

TP + Ɛ), and SUM(R) is the sum of the weighted absolute

deviations minimised in estimating each of the corre-

sponding reduced parameter models (logChl = b0 + Ɛ).
The QR-derived R1 values were further converted to the

unit of measure (R2) comparable to the OLSR-derived R2

values following the formula (McKean & Sievers, 1987;

Schooley & Wiens, 2005): R2 = 1 – (1 – R1)2. Moreover, the

Akaike information criterion difference was computed

according to Cade, Noon & Flather (2005) as follows:

DAIC = AIC(R) - AIC(F), where AIC(F) and AIC(R) are

Akaike information criteria for the full parameter models

(i.e. logChl = b0 + b1logTN + Ɛ and logChl = b0 + b1logTP

+ Ɛ) and the corresponding reduced parameter model

(logChl = b0 + Ɛ), respectively. More details of the QR

methodology targeted to ecologists can be found in Cade

& Guo (2000), Cade & Noon (2003), and Cade et al. (2005).

The OLSR analysis was performed with the SPSS 13.0

software, while the QR analysis used the R (R Develop-

ment Core Team, 2014) package quantreg version 5.05

(Koenker et al., 2013).

To quantify the effect of TP percentile selection (PS)

on the limitation model and management target of nitro-

gen (i.e. 99th quantile model logChl = b0 + b1logTN + Ɛ),
we developed a coupled PS-QR approach as follows

(Fig. 1): (i) the 75th, 50th and 25th percentiles of TP con-

centrations for the entire water quality data set (Fig. 1a)

were selected to define three subdata sets, respectively

(Fig. 1b); (ii) applying the QR analysis to each of these

three subdata sets (Fig. 1b), the upper boundaries of

(a) (b) (c) (d)

Fig. 1 The coupled framework for modelling lake-specific eutrophication illustrating the percentile selection (PS, a) of nutrient (e.g. total

phosphorus, TP), quantile regression of subdata sets (e.g. chlorophyll-total nitrogen; logChl-logTN, b) and the 99th models prediction (MP,

c) for TN thresholds (d) that limit a specific Chl target.
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Chl-TN distributions at a log–log scale are fit by the

99th quantile model logChl = b0 + b1logTN + Ɛ (Fig. 1c);

and (iii) the 99th quantile models for three subdata sets

(Fig. 1c) predict and compare the TN concentration

threshold targets (Fig. 1d) for controlling a specific Chl

target under decreasing percentiles of TP concentration.

Similarly, we repeated the PS-QR-coupled approach to

quantify the effect of TN percentiles selection on the lim-

itation model and management target of phosphorus

(i.e. 99th quantile model logChl = b0 + b1logTP + Ɛ).

Results

The DA-OLSR-derived models

The 3545 observations comprising the entire data set

represent a wide range of chlorophyll and nutrient con-

centrations within Lake Champlain (Table 1). Based on

the 1992–2012 annual means (Chlam, TNam and TPam,

diamonds of Fig. 2a and b) for each of the 15 sampling

stations at the log10 scale, the DA-OLSR-coupled analysis

produced the annual models: logChlam = 1.47(�0.12)

logTNam-3.14(�0.31) (n = 284, R2 = 0.351, AIC = �138,

P < 0.01, Fig. 2a) and logChlam = 0.74(�0.04)logTPam-

0.26(�0.05) (n = 284, R2 = 0.611, AIC = �284, P < 0.01,

Fig. 2b). Moreover, the summer (n = 2130) data set

shows a wide range of chlorophyll and nutrient concen-

trations (Table 1). The DA-OLSR-coupled analysis of the

summer data set (2130 observations, open circles of

Fig. 3a and b) generates the empirical models of summer

means (Chlsm, TNsm and TPsm, diamonds of Fig. 3a and

b): logChlsm = 1.33(�0.12)logTNsm-2.78(�0.32) (n = 284,

R2 = 0.287, AIC = �92, P < 0.01, Fig. 3a) and log-

Chlsm = 0.72(�0.04)logTPsm-0.24(�0.05) (n = 284, R2 =

0.545, AIC = �219, P < 0.01, Fig. 3b).

Ordinary and quantile regressions

The OLSR analysis of the paired log10-transformed

data for 3545 individual observations produces the OLSR

Table 1 Statistical summary of chlorophyll (Chl,

mg m�3), total nitrogen (TN, mg m�3) and total

phosphorus (TP mg m�3) for the entire n = 3545

data set and the summer n = 2130 data set

Data set Variable N Mean SD Max 75th 50th 25th Min

Entire Chl 3545 6.1 7.0 116.4 7.1 4.2 2.8 0.4

TN 3545 417.8 143.9 1720.0 450.0 390.0 340.0 110.0

TP 3545 24.2 17.7 235.0 32.0 16.4 12.0 5.0

Summer Chl 2130 6.2 7.6 116.4 6.8 4.1 2.7 0.5

TN 2130 416.2 144.9 1710.0 440.0 380.0 340.0 110.0

TP 2130 24.4 17.9 235.0 32.0 16.8 12.3 5.0

(a) (b)

(c) (d) (e)Fig. 2 Scatter plots of chlorophyll (Chl)

against total nitrogen (TN, a) and total

phosphorus (TP, b) for all n = 3545

observations of Lake Champlain with the

DA-OSLR-derived models of annual

means (diamonds), as well as the stan-

dard deviation (SD) against annual

means of Chl (c), TN (d) and TP (e). The

horizontal line (c–e) indicates the

standard deviations of all n = 3545

observations.
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models: logChl = 0.81(�0.04)logTN-1.45(�0.11) (n = 3545,

R2 = 0.095, AIC = 1803, P < 0.001; dark grey line of

Fig. 4a) and logChl = 0.67(�0.02)logTP-0.22(�0.02) (n =

3545, R2 = 0.299, AIC = 899, P < 0.001; dark grey line of

Fig. 4e). Using these paired data, the QR analysis results

in increased coefficients of determination (R2, Fig. 5a) from

0.001 to 0.386, DAIC value from 4 to 1724 (Fig. 5b), signifi-

cance level from P < 1.000 to P < 0.001 (Fig. 5c) and slopes

(b1, Fig. 5d) from �0.11(�0.11) to 1.56(�0.15) as well as

decreased intercepts (b0, Fig. 5e) from 0.35(�0.28) to �2.69

(�0.38) with increasing quantiles for the logChl =

b0 + b1logTN + Ɛ model. The coefficients of determination,

DAIC value, significant level, slopes and intercepts for the

logChl = b0 + b1logTP + Ɛ model increase gradually from

0.022 to 0.539 (R2, Fig. 5f), 76 to 2760 (Fig. 5g), P < 0.064 to

P < 0.001 (Fig. 5h), 0.21(�0.11) to 1.08(�0.09) (b1, Fig. 5i)

and �0.33(�0.14) to �0.14(�0.11) (b0, Fig. 5j) with increas-

ing quantiles. The upper Chl-TN and Chl-TP boundaries

are best fit by the 99th quantile models logChl = 1.56

(�0.15)logTN-2.69(�0.38) (R2 = 0.386, DAIC = 1724,

P < 0.001, dark line of Fig. 4a) and logChl = 1.08(�0.09)

logTP-0.14(�0.11) (R2 = 0.539, DAIC = 2760, P < 0.001,

dark line of Fig. 4e), respectively.

Percentile selection and model estimations

A statistical summary (Table 1) shows the 75th, 50th

and 25th percentiles of the 3545 observations with TP

concentrations of 33.1, 17.0 and 12.3 mg m�3 and TN

concentrations of 450.0, 390.0 and 340.0 mg m�3. The

PS-QR-coupled analysis further estimated the 99th quan-

tile model parameters for both the logChl = b0 + b1log-

TN + Ɛ under reduced TP concentrations (triangles of

Fig. 4b–d) and the logChl = b0 + b1logTP + Ɛ under

reduced TN concentrations (triangles of Fig. 4f–h). The

99th quantile model logChl = b0 + b1logTN + Ɛ exhibits

a dramatic decline in coefficients of determination (R2)

from 0.386 to 0.012, DAIC value from 1724 to 9, signifi-

cant level from P < 0.001 to P < 0.130 and slopes from

1.56(�0.15) to 0.37(�0.24) as well as a dramatic increase

in the intercept from �2.69(�0.38) to 0.04(�0.64) with

reducing TP concentration (dark line, Fig. 4a–d). For the

99th quantile model logChl = b0 + b1logTP + Ɛ, the coef-

ficients of determination, DAIC value and significant

level decrease from 0.539 to 0.189, 2760 to 176 and

P < 0.001 to P < 0.010 overall with reducing TN concen-

trations, respectively. When the TN concentration is

(a) (b)

(c) (d) (e) Fig. 3 Scatter plots of chlorophyll (Chl)

against total nitrogen (TN, a) and total

phosphorus (TP, b) for summer n = 2130

observations of Lake Champlain with the

DA-OSLR-derived models of summer

means (diamonds), as well as the stan-

dard deviation (SD) against summer

means of Chl (c), TN (d) and TP (e). The

horizontal line (c–e) indicates the stan-

dard deviations of summer n = 2130

observations.

Fig. 4 The OSLR-derived models (dark grey line) and the 99th quantile models (dark line) of Chl-TN distribution at log10 scale for all 3545

observations (a) and these observations under decreasing TP concentration (b: 75th, c: 50th, d: 25th; triangles), as well as Chl-TP distribution

at log10 scale for all 3545 observations (e) and these observations under decreasing TN concentration (f: 75th, g: 50th, h: 25th; triangles). The

thresholds of TN and TP for limiting a specific Chl target (e.g. 15.0 mg m�3, logChl = 1.18; dotted line) are indicated by the dark grey-

dashed line (the OSLR-derived model prediction, a and e) and the dark-dashed line (the 99th quantile model prediction, a–h).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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reduced from 100th to 75th percentile, the slope

decreases from 1.08 to 0.69 and the intercept increases

from �0.14 to 0.29 (dark line, Fig. 4e,f). However, when

TN is further reduced from 75th to 25th percentile, the

slope and intercept remain nearly unchanged (dark line,

Fig. 4f–h).

Discussion

Issues of the conventional approach

Using the conventional DA-OLSR-coupled approach,

empirical linear models describing the relationship

between Chl and TN and TP were generated for the

entire (n = 3545) data set. In general, the coefficients of

determination were higher for the DA-OLSR-derived

model of Chl and TP than for that of Chl and TN. These

results appear consistent with the canonical inference of

statistical limnology, which used the relatively high coef-

ficient of determination to indicate phosphorus limitation

(e.g. Phillips et al., 2008; Wang et al., 2008). Although it

may be unreasonable to expect either of these DA-OLSR

models based on annual means to provide a good fit for

the entire n = 3545 data set, the variation being masked

by the process of DA is likely to be critical for robust

inferences of nutrient limitation that are in line with the

ecological law of the minimum. On the one hand, the

DA dramatically reduced the range of distribution for

the entire Lake Champlain data set, while on the other

hand, the process of DA also aggregated the multiple

annual observations for each year at each of the 15 sam-

pling locations into the simple surrogate for Chl, TN and

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j) Fig. 5 The coefficient of determination

(R2), Akaike information criterion

(MAIC), significance level (P<), slopes (b1,

grey lines: 95% confidence internal; black

bar: standard error) and intercepts (b0,

grey lines: 95% confidence internal; black

bar: standard error) for logChl =
b0 + b1logTN + Ɛ (a–e) and logChl =
b0 + b1logTP + Ɛ (f–j) with increasing

quantiles of all 3545 observations.
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TP. Indeed, such an approach masked the temporal vari-

ation of these predictor and response variables within

the annual time period. Furthermore, some of this

masked temporal variation was higher than the total var-

iation of the entire Lake Champlain data set, as shown

by the scatter plots of standard deviation versus mean.

Furthermore, these same problematic issues identified in

our n = 3545 data set analysis are revealed when multi-

ple summer observations are averaged prior to the OLSR

analysis using the DA-OLSR-coupled approach on the

n = 2130 summer data set. Since DA reduces the range of

the data distribution under consideration and masks the

temporal variation observed within the annual or sum-

mer period, it is reasonable to believe that the DA-OLSR-

coupled approach is not applicable for statistical infer-

ence of phosphorus limitation in Lake Champlain and

that eutrophication models derived from such an

approach are fundamentally flawed.

The high level of uncertainty masked by the DA is

likely to be present for many published models that

average data prior to OLSR analysis (e.g. Higgins et al.,

2011; Wagner et al., 2011). As a result, those published

models may have been applied inappropriately when

statistically inferring nutrient limitation for their lake

ecosystems, given the strong influence of DA across

multi-observations (Mooij et al., 2010; Stow & Cha, 2013).

Furthermore, an inaccurate inference of nutrient limita-

tion may result in similarly flawed nutrient management

targets for the modelled lake ecosystems. In addition to

these statistical inference issues, the direct comparison

of model parameters among different studies is not pos-

sible due to the DA uncertainty effects on model estima-

tions, potentially contributing to the ongoing debate on

eutrophication management strategy. While the violation

that DA imposes on the statistical assumptions has been

theoretically addressed (Jones et al., 1998; Stow et al.,

2006), the incorporation of straightforward advances in

statistical science to avoid this issue has not been practi-

cally or broadly applied to the common eutrophication

modelling approach within the international limnologi-

cal community. The obvious potential for misleading

inferences of nutrient limitation and associated targets

generated by the conventional DA-OSLR-derived Chl-

nutrient models serves as strong motivation to derive a

more robust statistical modelling approach that could be

broadly utilised for setting lake-specific nutrient criteria.

Revised statistical approach

In the light of the noted flaws associated with averaging

annual or summer observations of Chl, TN and TP, we

generated the OLSR-derived models using all 3545

observations. Given the common use of OLSR-derived

R2 values as indicative of a cause–effect relationship, or

lack thereof (e.g. Prairie, Duarte & Kalff, 1989; Stow &

Cha, 2013), neither TN nor TP would be considered a

limiting nutrient of Chl within Lake Champlain based

on OSLR-derived model output. However, this model

result does not appear consistent with the general con-

sensus that reducing nutrient inputs is the most effective

way to mitigate cultural eutrophication, as it is well

known that long-term nutrient loading from the catch-

ment has caused eutrophication in Lake Champlain

(Levine et al., 2012; Smeltzer et al., 2012). In fact, one of

the limitations of using the OLSR-derived R2 values to

infer nutrient limitation is that the OLSR analysis cannot

eliminate the effects of drivers of Chl concentration

other than TN or TP. This limitation is clearly evident in

the Lake Champlain analysis, as the distribution of Chl-

TN (or Chl-TP) suggests that Chl responds differently to

a given TN (or TP) concentration. To be consistent with

the ecological ‘law of the minimum’, nitrogen can be

regarded as the only limiting factor when Chl is equal

to or near its maximum value at a given TN concentra-

tion, while a factor other than nitrogen may be the active

limiting constraint when Chl is lower than its maximum

value. Similarly, phosphorus can be identified as the

only limiting factor when Chl response to a given TP

concentration is at or near its maximum value, while a

factor other than phosphorus may be the active limiting

constraint when this response falls below its maximum

value. The OLSR analysis, however, focuses on the

mean of other unmeasured factor-limited Chl responses

as a function of a given TN (or TP) concentration and

generates empirical linear relationships that are not

useful for inferring nitrogen and phosphorus limitations

in Lake Champlain. This suggests that a better statistical

approach to reduce the potential impact of unmeasured

factors on cause–effect models of Chl nutrient is clearly

warranted in the case of Lake Champlain.

Furthermore, it is logical that the impact of unmea-

sured factors on the OSLR-derived Chl-nutrient models

will cascade to the generation of flawed nutrient criteria.

Indeed, when the reduced Chl target concentration is set

at 15 mg m�3 (USEPA, 2000; logChl = 1.18, dotted line

of Fig. 4a and e), the OLSR-derived models would

predict the threshold of TN and TP concentrations to be

1793.6 mg m�3 (logTN = 3.25, dark grey-dashed line of

Fig. 4a) and 119.8 mg m�3 (logTP = 2.08, dark grey-

dashed line of Fig. 4e), respectively. Hypothetically,

Lake Champlain managers could then implement

strategies to reach those target thresholds of TN
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(1793.6 mg m�3) and TP (119.8 mg m�3). However, a

more comprehensive analysis indicates that reducing

nutrients to those targets would not produce the desired

suppression of Chl concentration. The spurious predic-

tions of the OLSR-derived models are more obviously

revealed by the Chl observations, which distribute above

its reduced target line (logChl = 1.18, dotted line of

Fig. 4a and e), despite having TN and TP concentrations

less than the predicated threshold values (logTN = 3.25,

dark grey-dashed line of Fig. 4a; logTP = 2.08, dark

grey-dashed line of Fig. 4e). As such, the inaccurate pre-

dictions we illustrated here confirm the problematic

application of the OLSR analysis in the development of

eutrophication management targets.

Given that other unmeasured factors (e.g. temperature)

cannot be managed and that eutrophication management

considers nutrients (TN and TP) as the controlling factors

of Chl, it is intuitive that managers adopt a statistical

approach capable of inferring nutrient limitation. Consid-

ering the fact that the OLSR-derived R2 values measure

goodness of fit over the entire Chl-TN (or Chl-TP) distri-

bution of data yet involve the effect of other unmeasured

factors, we optimised the inference of nutrient limitations

using the QR-derived R2 values, which measure goodness

of fit for a particular quantile of Chl-TN (or Chl-TP) dis-

tribution. The increased QR-derived R2 values reveal that

other unmeasured factors constraining Chl below the

upper boundary of the Chl-TN (or Chl-TP) distribution

can be excluded gradually with increasing quantiles. The

highest QR-derived R2 value at the 99th quantile shows

that the 99th quantile model represents a best fit for the

upper boundary of the Chl-TN (or Chl-TP) distribution.

These results are completely consistent with the assump-

tions that nitrogen (or phosphorus) limitation within the

system is captured at the upper boundary of the Chl-TN

(or Chl-TP) distribution (e.g. Jones, Obrecht & Thorpe,

2011). Moreover, the higher R2 values for the 99th quan-

tile models, relative to the OLSR-derived models, confirm

that the QR analysis is more robust than OLSR for infer-

ring nutrient limitations.

Equipped with a more robust statistical inference of

nutrient limitation, another advantage of using the QR

approach is that the 99th quantile models can provide

more reliable prediction than the conventional OLSR-

derived models of TN and TP thresholds, needed to con-

trol the Chl target within Lake Champlain. To constrain

Chl below a specific target (e.g. 15 mg m�3), predicted

TN and TP thresholds using the 99th quantile models

are, respectively, 305.7 mg m�3 (logTN = 2.49, dark-

dashed line of Fig. 4a) and 16.7 mg m�3 (logTP = 1.22,

dark-dashed of Fig. 4e). These predictions are consistent

with the Chl-TN and Chl-TP distributions, in which Chl

concentrations are always lower than the target when

the concentrations of TN and TP are less than the pre-

dicted thresholds. The accurate TN and TP threshold

predictions illustrated here confirm the advantage of the

QR analysis in the development of nutrient management

targets. Moreover, the QR analysis could be applicable

to generate other quantile models (e.g. 95th and 90th) as

it would be acceptable for lake managers, given that the

99th quantile model is regarded as too stringent for

practical lake management. Thus, our analyses provide

practical insight into how eutrophication models com-

monly used by research communities and management

entities can evolve to incorporate straightforward statis-

tical advances in ecology, therefore improving their util-

ity to infer nutrient limitations and determine effective

nutrient thresholds.

Integration of percentile selection and quantile regression

After clear demonstration of the QR analysis advantages

relative to OLSR for Chl-nutrient model and threshold

development, the logical next step is to build a robust

approach to detect the relative importance of nitrogen

and phosphorus in controlling Chl concentration for

individual lake ecosystems. Using the case of Lake

Champlain, we illustrate the power of using a PS-QR-

coupled approach for developing lake-specific nutrient

management strategies. When applying the PS-QR-cou-

pled approach to the Lake Champlain data set, the

reduced R2 values detected for the 99th quantile models

logChl = b0 + b1lnTN + Ɛ (dark line of Fig. 4a–d) suggest

that nitrogen impact on Chl decreases when TP concen-

trations are held within the 25th percentile. Predictions

from these 99th quantile models reveal that the thresh-

olds of TN concentration for limiting a specific Chl

target increase dramatically when reducing TP concen-

tration. In other words, the need to reduce nitrogen

inputs could become less if Lake Champlain managers

were able to effectively reduce phosphorus inputs. For

example, the concentration of TN could be relaxed to

1312.6 mg m�3 (logTN = 3.12, dark-dashed line of

Fig. 4d), as long as TP concentration in Lake Champlain

can be reduced to the 25th percentile (i.e. 12.0 mg m�3).

As such, the PS-QR-coupled approach, which involves

in the selection of TP percentiles and the estimation of

nitrogen models, could provide robust support for

developing a TP reduction-priority strategy for mitigat-

ing Lake Champlain eutrophication.

Similarly, we applied the PS-QR-coupled approach to

infer phosphorus limitation and predict management tar-
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gets under TN reduction. In the present case, the extent

to which the R2 value decreases for the 99th quantile

model logChl = b0 + b1lnTP + Ɛ with reducing TN con-

centrations is less than that for the 99th quantile model

logChl = b0 + b1lnTN + Ɛ with reducing TP concentra-

tions. Unlike TP reduction, which dramatically affects

nitrogen limitation, TN reduction exerts a less marked

effect on phosphorus limitation. For the 99th quantile

model logChl = b0 + b1lnTP + Ɛ, the decreased slope sug-

gests that TN reductions from the 100th to 75th percentile

increase the effectiveness of moderate TP reductions, but

the consistent slope indicates that TN reductions below

the 75th percentile are unlikely to be effective. By apply-

ing these 99th quantile models logChl = b0 + b1lnTP + Ɛ
to predict the threshold of TP for a specific Chl target, we

found that TP concentration can be relaxed slightly from

16.7 mg m�3 (logTP = 1.22, dark-dashed line of Fig. 4e)

to 19.8 mg m�3 (logTP = 1.30, dark-dashed line of

Fig. 4f) when reducing TN concentration into 75th per-

centiles and that it must be controlled to <21.4 mg m�3

(logTP = 1.33, dark- dashed line of Fig. 4h) even if TN

concentration is reduced into the 25th percentile. These

findings further suggest that reducing TP concentration

remains the most important strategy for achieving Chl

targets, although the effectiveness of these reductions

increases somewhat with moderate decreases in TN. Fur-

thermore, this analysis clearly illustrates how the PS-QR-

coupled approach might be utilised by researchers to

develop multiple strategies for reaching Chl targets in

eutrophic systems, potentially giving management and

stakeholder communities increased flexibility as they try

to reach their water quality goals.

From applying the PS-QR-coupled approach to Lake

Champlain historical data, we conclude that TP reduc-

tion should be the management priority, although dual

nutrient reductions would be better for eutrophication

mitigation of this lake and allow for flexible TP targets.

However, we must emphasise that this is an ecosystem-

specific conclusion, derived from an ecosystem-specific

data set and empirical model. Since it is unrealistic to

develop an empirical model that is universally applica-

ble to the eutrophication management of a broad spec-

trum of lake ecosystems worldwide, our objective was

to develop a robust statistical approach to dealing with

ecosystem-specific data that could be utilised for man-

agement entities with access to similar monitoring data

sets. Indeed, it was difficult to develop ecosystem-spe-

cific eutrophication models for individual lakes in the

1960s when a multiple-lake modelling approach was

developed given the scarcity of water quality monitoring

data. The availability of water quality observations,

however, has since increased for many large lakes (e.g.

Great lakes, Lake Champlain, Lake Okeechobee, U.S.A.;

Three Gorges Reservoir, Lake Taihu, Lake Caohu,

China). Thus, it is time for lake researchers and manag-

ers to leverage these large data sets to develop and

apply statistical models tailored to individual lakes

when possible. In addition, advances in modern statisti-

cal methods (e.g. quantile regression) and corresponding

software (e.g. R quantreg package) over the past

50 years make it easier to analyse these growing water

quality data sets to construct more sophisticated and

ecologically meaningful eutrophication models.

Additionally, while in Lake Champlain, the PS-QR-

coupled approach suggests that phosphorus reduction is

critical for eutrophication control, some of the novelty of

this approach from a theoretical standpoint improves

the understanding of the limiting factors, or their

co-limitations, of such ecological processes. Indeed, co-

limitation is becoming a more prevalent paradigm in lake

ecology, particularly in highly eutrophic systems (Elser

et al., 2007), and statistical approaches that more accu-

rately quantify the relationship between both nutrients

and chlorophyll are critical to understanding the drivers

of ecological processes in such systems. As we reveal the

important role of reduced phosphorus on nitrogen limita-

tion using the PS-QR-coupled approach, this approach

may also be useful for understanding the interacting roles

of multiple limiting nutrients and predicting reduction

targets that consider changes in other controlling factors

(e.g. flushing, grazing, rainfall, temperature) when the

corresponding parameters are available for researchers.

Expanding the PS-QR-coupled approach to include other

parameters could actually prove a powerful way forward

for more complete theoretical knowledge of lake-specific

resource limitation needed by the management commu-

nity. Furthermore, this approach allows the research

community to investigate these important ecological pro-

cesses using existing long-term data sets, which could

then be used for stand-alone research projects or to help

guide additional ecological experiments or sampling strat-

egies. As such, the approach developed in this study is

broadly applicable to research and management commu-

nities interested in developing ecologically meaningful

and empirically robust models for the nutrient reduction

targets of individual lake-specific ecosystems contami-

nated or threatened by nutrient loading.
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